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Rotation of the coordinate system describing the trigonal system simplifies the computations 
involved in relating observed ultrasonic velocities to the elastic constants. The six elastic constants 
of sapphire are calculated from results of measurements employing two ultrasonic methods: the 
thickness resonance method and the visibility method. The latter is used to find structural irregu- 
larities in the sample as well as their location and approximate size. 

I n t r o d u c t i o n  

The use of high ultrasonic frequencies facil i tates the 
exper imenta l  de terminat ion of the elastic constants of 
crystals. If  the ultrasonic wave length in the sample 
is small  compared with the dimensions of the specimen 
one can produce plane elastic waves in the crystal. 
The Christoffel equations which were derived by 
Green (1839) give the relat ionship between the velocity 
of propagation,  the densi ty  of the sample, the direc- 
t ion of propagation with respect to the coordinate 
system of the sample, and the elastic constants. For 
the determinat ion of the elastic constants the measure- 
ment  of the densi ty  of the sample and of the velocity 
of the ultrasonic waves in a small number  of crystallo- 
graphic directions is necessary. Only a few cuts of the 
crystal  are required. 

The Christoffel equations can be applied to any  
crystall ine system. The mathemat ica l  formulat ion 
result ing from these equations is usual ly ra ther  in- 
volved. The relat ionship between a measured ultra- 
sonic velocity and the corresponding elastic constants 
can be obtained in a much simpler  form by performing 
a t ransformat ion of the stress tensor per ta ining to the 
specia] system under  consideration. This transforma- 
tion is outl ined here for the trigonal system. The 
elastic constants are calculated for sapphire using 
results of velocity measurements  obtained from two 
ultrasonic methods which are also described here. 
One of the methods is applicable to both t ransparen t  
and opaque crystals while the other is restricted to 
t ransparent  samples but  offers a possibil i ty to detect 
s t ructural  irregularities in the crystal.  

T h e o r y  

For the purpose of this paper  it is assumed tha t  for 
all experiments  Hooke's  law is valid which, under  
adiabat ic  conditions, can be wri t ten 

Sii = Silk~Tkz I 
T~I = c~mSkz 
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i , j , k , l =  1 , 2 , 3  } 
S~j = Sj~; Tij = Tji " 

(1) 

Equat ion  (1) can be wri t ten 

Tp = c m S q  , P' q =  1 , 2 , 3 , . . . , 6 ,  (2) 

if the suffixes ij, kl = 11, 22, 33, 23, 13, 12 are re- 
placed by  p, q = 1, 2, 3, 4, 5, 6, respectively. Accord- 
ing to the notat ion of Voigt (1928) the Cm are called 
the elastic constants while the s m are the elastic 
moduli .  

The Christoffel equations are usual ly employed to 
evaluate  the elastic constants from the exper imental  
data.  Their application is based on the fact tha t  with 
an elastic wave propagated in an anisotropic medium 
there are associated three independent ,  mu tua l ly  
orthogonal displacement  vectors D which are func- 
t ions of the wave vector k whose direction is perpen- 
dicular to the planes of constant  phase of the wave. 
In  general the three D belong to three different waves 
which are propagated in the direction of k with three 
different  velocities. If  one of the three D is parallel  
to k one purely  longitudinal  and two pure ly  trans- 
verse waves will result. In  most cases, however, the 
waves will contain longitudinal  and shear components.  
If  the expression ' longitudinal '  wave is used in the 
following, it will designate a 'p redominant ly  longi- 
tudinal '  wave; the same holds for 'shear '  waves. 

Let  the Cartesian coordinate system of the aniso- 
tropic mater ia l  be fixed such tha t  the propagation 
vector k of the elastic wave has the direction cosines 
l, m, n. The three possible velocities are then the roots 
of the cubic equat ion (Christoffel equation) 

¢11 - -  ~) V2 ~)12 ¢13 
~b12 ~b22-~ V2 ~b23 = 0 ,  (3) 
~b13 ~b23 ~b3z - ~ V 2 

where ~ is the density.  The ~)ab a r e  defined by 

~ab --~ 12Clalb + m2C2a2b + n2C3a3b + mn( C2a3~ + C3a2b ) 
+ nl(C3alo+Cla3o)+ml(Cla2b+C2al~) . (4) 

The elastic constants Ctm in equat ion (4) can be 
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written in standard form by converting them to the 
corresponding Cpq. I t  is obvious from equations (3) 
and (4) tha t  the form of the solution of equation (3) 
will be rather involved unless two of the direction 
cosines are zero. Fortunately,  some of the Cvq vanish, 
and the non-zero terms are usually written in the form 
of a matrix for a given crystal group. For the trigonal 
system this matrix becomes 

I Cn C12 C13 C14 0 0 

C1~ Cn C~ -C1~ 0 0 
C13 Cla Czz 0 0 0 
C~ - C~ 0 C~ 0 0 (5) 
0 0 0 0 C4~ C~ 

_ 0 0 0 0 C~ C66 - 

where C6~ = ½ ( C n -  C~). 

Substituting the appropriate C~q from equation (5) 
into equation (4) one obtains quite readily expressions 
for the six ~ba~. Bhimasenachar (1945) finds solutions 
for the Christoffel equations for some specific directions 
of k for the trigonal system in which the Cartesian 
coordinate system is placed in such a manner that  the 
Z axis coincides with the trigonal axis while the X axis 
corresponds to the a~ axis. Quite obviously, any solu- 
tion of equation (3) will contain terms in @aV ~, @~V ~, 
and @ V ~ whose coefficients are various combinations 
of Cvq. The computation involved in separating the 
six elastic constants is usually quite cumbersome, 
particnlarly in the case of coupled longitudinal and 
shear modes. 

In order to simplify the calculation of the elastic 
constants it is advantageous to perform a rotation of 
the entire Cartesian coordinate system such that  the 
Z axis of the rotated system is always in the direction 
of the wave propagation vector k. Let the new Z axis 
be called the Z' axis, and the new coordinate system 
the X '  Y 'Z '  system. Depending on the direction of k 
there will be a set of direction cosines relating the 
two systems, expressed by the following scheme 

X 1 

X2 
X3 

r ! v 
X1 X2 Xa 

axx  axy  azz 

ayx  ayy  ayz 

azx azy azz 

(6) 

An elastic wave travellin 8 in the direction of k has 

associated with it one longitudinal and two shear 
waves which may  be mixed waves. By conventional 
definition--see Sokolnikoff (1956)--the constants C~3 
and C~4 refer to the longitudinal and the shear waves, 
respectively. These constants will be combinations of 
various unprimed Cvq. Since one finds experimentally 
only the velocity of the longitudinal and that  of one 
of the two shear waves in a given direction one can 
substitute the measured values of V into 

V 2 , V o , @ L =C33 or @ ~ = C 4 4 .  (7) 

In order to be able to relate any observed velocity 
to the unprimed Cvq which are to be determined one 
notes that  equation (5) is a tensor of rank 4 which 
can be transformed to a new Cartesian coordinate 
system ( X ' Y ' Z ' )  by the equation 

~x; ~x', ~x; Ox:~ c ,~ , ,  (s) 

where i ,  j , k , l =  1 ,2 ,3  and r , s , t , u =  1 ,2 ,3 .  

The ~x: ~x: - - . . .  are the direction cosines of (6). 
txl txz 

Observing that  some of the Cim are equal to zero in 
the trigonal system, one finds tha t  for C~33a only 12 
terms in C,m remain to be summed. These terms, if 
written in the 2-suffix system, have suffixes which 
give their actual positions in the array (5). Replacing 
these suffixes by those required by the matrix of the 
trigonal system (e.g. C56 = -C24 = C14 ) and rearrang- 
ing them one obtains for a longitudinal elastic wave 
in any direction of k 

' 2 2 2 _  4 2 2 / = (4Ca4 + 2Cla ) (1 - az, ) azz C33 C n ( 1 - a = )  ' C3aa=+ (9) I 2 2 + 4C14 (3axe- ayz)ay~a~z. 

By an analogous procedure one finds 

' 2 2 , 2 2 C44 C n (azvaz, 7- 2 = ayyayz) + C12axyaxzayyayz 

+ 2 Cla[azvazz(axyaxz+ayyayz)]+ 
2 C14 [2azvaxz (ayvazz + ayzazy) + 2 ( axy avz azz 

2 2 2 
+ axy ay v azy --  ayy ay z a~z - -  ayzayy a ,  v)] ( 10 ) 

2 2 + C3z (a,vazz) + C4~ [(avva~ + avzazv) 9" 
+ (axyazz + axzazy) ~] 

+ C66 (azy ayz + azz ayv)~. 

I t  should be noted that  only one C~a is possible for 
a given direction while two C~4 can be obtained. This 
is evident from the fact that  in the 4-suffix system 
C~4 can be expressed in four different ways, i.e. 
rata = 2233, 2323, 3322, 3232. These two sets of two 
equivalent arrangements result in two slightly dif- 
ferent formulas for C~4. 0n ly  one form is given in 
equation (10), the other form is found by rotating the 
X '  Y 'Z '  system around Z' until the Y' axis has taken 
the place of the X'  axis. This procedure changes the 
values of some of the direction cosines in (6) and gives 
the second form of C~4. The direction cosines occurring 
in equation (9) are not affected by such a rotation. 

A p p l i c a t i o n  

The relations given above are applied to three blocks 
of synthetic single crystal sapphire which were pre- 
pared by the Linde Air Products Company of New 
York. The normals to the plane-parallel faces make the 
following angles with the X Y Z  coordinate system. 
(9 is the angle between the projection of the normal 
in the X Y plane and the X axis, and 0 the angle 
between the normal and the Z axis.) 
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Direction 
Block of normal ~ 0 

I X 0 90 ) 
I Y 90 90 / I Z 0 0 

I I  A o 135 ~ (11) 
i i  B o 45 / 

I I I  A 90 135 J I I I  B 90 45 

Placing the Z'  axis in the direction of the normal,  
one obtains a set of direction cosines which is sub- 
s t i tu ted into equations (9) and (10) to yield expressions 
for the C' in terms of C~q. Some of the results are 
given below. 

I X :  C33 = e l l  ; C44 ---~ C44 ; C44 ~--- C66. I 
I Z:  C~3 = C33; C~4 = C44 • I I I  A" C~3 = ~-(Cn+C33+4 C44+2 Cla); [ (12) 

C~4 = ½(C44+Cs6); I 
C~4 = ¼(Cn+C33-2 C~3) • ! 

Similar  expressions are obtained for other directions of 
the normal.  Replacing the C' in above expressions by  
@V 2, where V is the ultrasonic velocity measured in 
the appropriate  directions of k, one can easily f ind 
all the elastic constants. Only the constants Cn, C33, 
and C44 can be found direct ly from measurements  in 
the X or Y and the Z direction. 

E x p e r i m e n t a l  m e t h o d s  

The elastic constants of a crystal  can be determined 
with a number  of static and dynamic  methods. Hear- 
mon (1946), (1956) describes in detail  their  applica- 
bilities and l imitat ions.  The size of the samples avail- 
able allowed the use of two ultrasonic methods which 
were found to be very  reliable and accurate:  The 
thickness resonance method and the vis ibi l i ty  method. 

T h i c k n e s s  r e s o n a n c e  m e t h o d  

If an ultrasonic wave is t r ansmi t ted  into a sample 
with parallel  faces one finds tha t  resonance of the 
sample can be observed at  various frequencies depend- 
ing on the dimensions of the sample. Ultrasonic energy 
is t r ansmi t ted  into the sample by  a t taching a quartz 
t ransducer  to the f lat  surface of the crystal  whose 
normal  then  corresponds to the direction of k. A th in  

fi lm of silicon grease or heavy  oil between the trans- 
ducer and the crystal  will provide sufficient acoustic 
coupling in most  cases. The t ransducer  is dr iven by  a 
radio frequency oscillator whose frequency is variable.  
Fi rs t  one finds a f requency at which m a x i m u m  trans- 
mission through the sample occurs, then  one varies 
the frequency unti l  another  m a x i m u m  is observed. If  
a longitudinal  elastic wave causes the occurrence of 
both m a x i m a  in such a manner  tha t  the number  of 
half  wave lengths set up between the parallel  faces of 
the crystal  by  the s tanding wave produced at the two 
frequencies has changed by exact ly  one due to the 
change in frequency, one can find the total  number  of 
half wave lengths present  in the specimen for each 
max imum.  This can be seen if one considers tha t  the 
velocity is constant  in a given direction. Therefore, 
only at certain frequencies will it  be possible to produce 
an elastic wave whose wave length is such tha t  
n] t* /2  = D where n is any  integer, and D is the dis- 
tance between the parallel  faces of the crystal. I t  
follows tha t  the successive conditions for resonance 
can be expressed 

Vz F1 F~ F 3 
D - n / 2  - ( n + l ~ / 2  - (n+~) /2  - " '"  ' (13) 

where Ft  are the resonance frequencies and 
F 1 < F~ < F 3 < . . . .  F rom equat ion (13) one can 
find n, n + l ,  . . . ,  and the velocity. I t  is advisable to 
f ind more than  two resonance frequencies for the 
calculation of VL, par t icular ly  when n is greater than  
about  10. 

Resonance frequencies can be de termined by optical 
effects. If  the sample is t ransparen t  it can be placed 
in the pa th  of coll imated l ight in such a fashion tha t  
k is perpendicular  to the direction of l ight propaga- 
tion. A s tanding wave, which is set up at a resonance 
frequency, will act as an ultrasonic grat ing for the 
coll imated l ight  and will produce a strong diffraction 
pat tern.  These pat terns,  first discovered by Lucas & 
Biquard  (1932), can be observed on a screen with an 
optical a r rangement  shown in Fig. 1. Vedam (1950) 
used this method for experiments  on optical glasses. 

Because of the small radiat ion damping  in air the 
resonance is very  sharp;  the diffraction pa t t e rn  dis- 
appears for very  small  deviat ions from the resonance 
frequencies which can therefore be determined with 
an accuracy of bet ter  t han  0.1%. 

I Slit Circular 
L I Source L Transducer 1 Filter I 2 Aperture 

\/ 
Crystal 
Sample 

Fig. I. Optical arrangement  for thickness resonance method.  

I-3 
Screen or 

Camera Plane 

1" 
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ISlit 
• I Sou rce . 
L1 Filter I '2 

 LMI 

Circular 
Aperture 

Transducer 

Crystal 
Sample 

Fig. 2• Optical arrangement for visibility method. 

Scale La Camera 

I t  is also possible to immerse the crystal par t ly  in 
a l iquid in which a diffraction pa t te rn  will be observed 
if m a x i m u m  transmission through the specimen occurs. 
This principle was applied extensively by  Bhagavan-  
t am (1946) and Bhimasenachar  (1950) for measure- 
ments  of crystal plates. The transmission becomes 
m a x i m u m  at the resonance frequency of the thickness 
vibrations.  However, in this case there is considerable 
radia t ion damping caused by the l iquid which de- 
creases the sharpness of the resonance. The diffrac- 
t ion pa t te rn  does not vanish as rapidly  with a slight 
change in frequency;  the determinat ion of resonance 
frequencies loses in accuracy. This method can be 
applied to opaque solids in which case, however, much 
higher accuracies m a y  be obtained by vibrat ing the 
specimen in air and by determining the resonance 
frequencies by  electronic instead of optical methods. 

Longi tudinal  waves are usual ly quite easily excited 
and observed; shear waves are sometimes ra ther  
difficult  to measure with this method since the dif- 
fraction pat terns  produced at their  respective reso- 
nance frequencies are much weaker than  those of the 
longitudinal  waves. I t  is therefore not difficult to 
decide whether  an observed m a x i m u m  transmission is 
to be assigned to the series of resonance frequencies 
due to longitudinal  or shear waves. 

Visibility method 
In  this method use is made of the fact tha t  an ultra- 

sonic wave in a t ransparent  substance acts very  much 
like a ruled grating;  the ultrasonic waves are made 
visible and their  'grating constants '  can be measured. 
From such measurements  one is able to calculate the 
velocity of propagation of the wave producing the 
grating. This method, developed by Hiedemann  et al. 
(1939), is one of the most powerful known methods 
wi thin  its range of appl icabi l i ty  ( transparency, etc.); 
it  yields very  accurate values of velocities and is thus 
well suited to f ind the elastic constants of t ransparent  
crystals• I t  also reveals some information about  the 
sample which is not obtainable with other ultrasonic 
methods.  

The necessary optical a r rangement  is shown in 
Fig. 2. Ultrasonic energy ]s t ransmi t ted  into the 
specimen in the usual manner.  A standing longitudinal  
or t ransverse wave is set up in the sample and acts 

as diffraction grating for the monochromat ic  l ight 
collimated by lens L 2. This ar rangement  produces an 
interference pa t te rn  at the planes P,  P ' ,  . . .  which 
are equal ly spaced along the optic axis. The periodicity 
of the visibi l i ty of the ultrasonic grating is given by 
a relation by Nath  (1936) and Nomoto (1936) very  
similar  to tha t  by  Lord Rayleigh (1881) for the 
periodicity of ruled optical gratings. 

The interference pat terns  in their  simplest  form 
consist of a series of lines whose spacings are equal to 
the distance between the nodes or antinodes of the 
s tanding wave in the sample. If, e.g., the wave length 
of the elastic wave in the specimen is 1 mm.,  the lines 
produced at P,  P ' ,  . . .  are 0.5 mm. apart• One can 
observe and measure these lines either with a travell ing 
microscope focused on one of the image planes or one 
can photograph directly a section of the planes con- 
ta ining the interference lines. Depending on the 
dimensions of the i l luminated sections of the crystal 
and on the wave length of the s tanding wave one can 
observe from 10 to more than  50 lines. Placing a 
t ransparent  scale in the plane to be photographed 
eliminates a number  of possible errors in relat ing 
distances measured on the enlarged photograph to 
actual distances on the fihn negative. 

The determinat ion of the desired elastic constants 
is done in the following way. One measures the dis- 
tance between a number  of lines on the photograph 
(with the correct scale appearing in the picture) which 
yields the ultrasonic wave length in the crystal, and 
with a knowledge of the excitat ion frequency used, 
one can find the velocity• The velocity is tha t  of either 
a longitudinal  or shear wave. The spacing of the lines 
gives an indication of what  kind of s tanding wave is 
set up in the sample. At about the same frequency 
shear waves, having a lower velocity, produce lines 
more closely spaced than  those due to longitudinal  
waves. Fig. 3 is par t  of a photograph of a s tanding 
longitudinal wave in the Z direction in sapphire at a 
frequency of 9.006 Mc. Measuring the distance be- 
tween any  two lines with the scale visible in the photo- 
graph, and knowing tha t  the distance between adja- 
cent lines equals one half  wave length, one finds the 
value of the longitudinal  velocity to be I 1,215 m.sec. -1. 
The densi ty of the sample is 3.988 g.cm. -~. From 
equation (7) one obtains C~3 = 50.2 × l011 dynes cm. -2, 
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Fig. 3. Regula r  in ter ference  lines in Z direction.  

where C~s = Csa for the Z direction. The rest of the 
elastic constants is computed in a similar manner. 
The definition of the visible lines in the photographs 
is increased by using polarized light. 

Numerical values of constants 
At least six measurements are required in both 

methods for the calculation of the six constants. With 
the thickness resonance method one finds various 
series of resonance frequencies corresponding to stand- 
ing waves in the crystallographic directions outlined 
in (11). The respective velocities are found from 
equation (13). In the visibility method the wave 
lengths of standing waves in different directions are 
measured directly, and the respective velocities are 
found from V = f2*. 

The numerical values of the six elastic constants 
are then calculated by substituting the measured 
velocities into the appropriate equations samples of 
which are given in equation (12). The elastic constants 
of synthetic sapphire are found to be: 

C l l  = 49"6 C12 = 10"9 
Cas = 50-2 Cla = 4.8 
Ca4 = 20.6 C14 = 3"8 

In units of 10 u dynes cm. -2. 

These values do not agree too well with those reported 
by Sundara Rao (1949) and Bhimasenachar (1950). 
Both authors employ a method in which the ultrasonic 
transmission through a thin sapphire disk is measured. 
A wedge-shaped quartz transducer--the method of 
Bhagavantam (1944)--is used in their experiments. 
Their experiments were repeated and it was found 
that there exists a series of limited frequency ranges 
rather than a series of peak frequencies at which 
maximum transmission occurs. An obvious reason for 
the difficulty to obtain sharp resonance peaks with 
thin plates is the following: The sharpness of the 
thickness resonance decreases appreciably if there 
exist even slight variations in the thickness of the 
plate. I t  is difficult to obtain the homogeneity of the 
samples required for sharp resonance in thin plates. 

Calculations show that the velocities obtained by the 

methods described in this paper fall within the range 
of error inherent in the wedge method; this margin of 
error is quite large, and the value of Caa may fluctuate 
between 49 and 56 × 1011 dynes cm. -2. The discrepancy 
between the values of Sundara Rao (1949), 50.6, and 
Bhimasenachar (1950), 56-3, falls within the observed 
range of error. On the other hand, both the thickness 
resonance and the visibility methods yield values of 
Cas accurate to within less than 0.5 %. 

Structural irregularities 
I t  is usually assumed that the ultrasonic velocity in a 
particular direction is uniform, and a calculation of 
the velocity according to the results of most methods 
is aetually based on that  assumption, or what amounts 
to the same end result, one finds an average ultrasonic 
velocity in a certain crystallographic direction. There- 
fore, one has to use other methods to prove or disprove 
the assumption of uniformity. Here a special advantage 
of the visibility method becomes apparent. Consider 
what will happen if in the single crystal sample there 
should be a layer of irregularity. Under these 
conditions it will still be possible to accommodate an 
integral number of half wave lengths provided the 
character of the standing wave is not completely 
destroyed. Observation of a standing elastic wave does 
therefore not necessarily imply that  the specimen has 
a uniform structure throughout. Fig. 4 illustrates this 

Fig. 4. Irregular spacing of interference lines. 

point. Closer inspection of the lines through 13.1, 
13.7, and 14.4 reveals that  they are not evenly spaced. 
The spacing of the first two lines is smaller than the 
average, and the next two lines are spaced wider. This 
shows that  the velocity in that  region varies and differs 
from the average velocity in the rest of the specimen 
along the same direction. This phenomenon gives an 
indication of the average velocity in a small slice of 
the crystal whose thickness is limited by the spacing 
between the interference lines. By increasing the 
frequency it is possible to narrow this slice. The limit 
of this process is essentially set by the width of the 
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(0) 

! r! 
! 

(b) 

Fig. 5. Structural irregularities in sapphire. 

(c) 

:,? . . . .  

. . . . .  

observed lines. By  rotat ing the sample around the 
axis of ultrasonic propagat ion it is possible to f ind 
also the approximate  lateral  dimensions of the region 
of irregularity.  The irregularit ies m a y  have different  
origins; polycrystal l ini ty ,  variat ions in density,  etc. 
m a y  be the cause. 

Other s t ructural  irregularit ies are seen in Fig. 5. 
The sensi t ivi ty in detect ing small  inhomogenei t ies  is 
increased if a greater n u m b e r  of lines per uni t  length 
is observed. In  order to obtain more lines wi thout  
increasing the f requency one moves the whole as- 
sembly camera,  L3, and scale (see Fig. 2) along the 
optic axis. At  various distances between the planes 
P, P ' , . . .  the interference of diffraction orders is 
such tha t  the number  of visible lines doubles as was 
pointed out by H iedemann  & Schreuer (1937). Fig. 5(a) 
is a photograph taken under  these conditions. I t  shows 
how the lines bend and become blurred in some 
sections. Examina t ion  of the sapphire  sample under  
polarized l ight shows tha t  the specimen is ir- 
regular in the region in question, and  since the 
wave length of an elastic wave is a funct ion of the 
orientat ion of the crystal  one can expect  shifts in the 
visible lines. Diverging and discontinuous lines in 
Figs. 5(b) and 5(c) can be used to locate s imilar  
regions of irregularities. 
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